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The boundary-layer flow over a semi-infinite vertical flat plate, heated to a 
constant temperature in a uniform free stream, is discussed in the two cases 
when the buoyancy forces aid and oppose the development of the boundary 
layer. In  the former case, two series solutions are obtained, one of which is valid 
near the leading edge and the other is valid asymptotically. An accurate numeri- 
cal method is used to describe the flow in the region where the series are not 
valid. In  the latter case, a series, valid near the leading edge is obtained and it is 
extended by a numerical method to the point where the boundary layer is shown 
to separate. 

1. Introduction 
The situation discussed in this paper is that of a uniform free stream U flowing 

along a semi-infinite vertical flat plate, which is fixed with its leading edge 
horizontal. The plate is heated to a constant temperature TI above the ambient 
temperature To. Heat is supplied by diffusion and convection from the plate, 
and this heating gives rise to buoyant body forces. There are two cases to con- 
sider: one when the plate extends vertically upwards, and the other when it 
extends vertically downwards. In  the first case the buoyancy forces act in the 
direction of the free stream, and in the second case, they oppose the free stream. 
In  both cases, near the leading edge, there is little chance for heat from the 
plate to be taken into the fluid, and the boundary layer is formed chiefly by the 
retardation of the free stream, but the effect of the buoyancy forces increases as 
the boundary layer develops. 

We shall discuss first the case when the free stream and the buoyancy forces are 
in the same direction. In this case the fluid in the boundary layer is accelerated 
by the buoyancy forces so that these act like a favourable pressure gradient. We 
will refer to this case as the favourable case. Far downstream, the layer isgoverned 
chiefly by the buoyancy forces. 

We solve this problem by first obtaining two series expansions, one which 
holds near the leading edge, and one which holds far downstream (which, in this 
case, is upwards). A step-by-step numerical method is used to describe the flow 
in the region where neither of these series holds. 
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To obtain the series expansions, a transformation is first applied to the 
boundary-layer equations. The nature of the transformation is dictated by the 
fact that near the leading edge the situation is essentially that of buoyancy forces 
modifying the forced convection solution, while asymptotically it is that of the 
effect of a free stream on the free convection solution. The problems of the small 
perturbation of the forced convection solution by free convection effects, and 
that of the small perturbation of the free convection solution by forced convec- 
tion effects are discussed by Szewczyk (1964). He obtains series expansions to 
describe the flow in each case, and gives the first three terms in each series for 
various values of the Prandtl number. There are several criticisms that I would 
like to make of Szewczyk’s paper. First, his series expansions are purely formal 
and not related to a specific physical situation, and secondly he expands in terms 
of parameters, but, in actual fact, they are co-ordinate expansions that he obtains. 
This leads him to ignore an important point in considering the effect of the free 
stream on the free convection solution. In  the situation under consideration here, 
this leads to an asymptotic expansion in 6-4, where 

(g is the acceleration due to gravity, p i s  the coefficient of thermal expansion, and 
AT = T,-T,; x is the co-ordinate that measures distance along the plate). 
Stewartson (1957, 1964) points out a fundamental difficulty in obtaining asymp- 
totic solutions of the boundary-layer equations. Since the boundary-layer equa- 
tions are parabolic in nature, the velocity and temperature at  a particular 
station depend on the velocity and temperature distribution upstream of this 
station. This, as Stewartson points out, leads to an arbitrariness being introduced 
into the asymptotic expansion at  some stage, which is due to neglecting the 
boundary conditions at the leading edge. Stewartson found that, in order to 
resolve this and obtain a solution which was exponentially small at  infinity, he 
had to include a logarithmic term in the asymptotic expansion. A similar situa- 
tion arises here. When we come to solve the differential equations governing the 
term of 0((-1), we find that there is a complementary function which satisfies all 
the required boundary conditions, and so arbitrary multiples of this can be 
added to any particular integral of the equations which also satisfies the boundary 
conditions. Because of the existence of this complementary function we find that 
we have to include a term of O(logf;/<) in the asymptotic expansion in order to 
obtain a solution for the term of O(f;-l) .  Szewczyk makes no mention of this in his 
paper. 

An accurate step-by-step method of the problem is obtained from an adapta- 
tion of a method given by Terrill (1960). This starts with velocity and tempera- 
ture profiles at  the leading edge and calculates velocity and temperature profiles 
downstream to an accuracy of four figures. 

When the plate extends vertically downwards the buoyancy forces retard the 
fluid in the boundary layer, so that these act like an adverse pressure gradient. 
This case will be referred to as the adverse case. 
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To solve this problem we obtain a series expansion near the leading edge, 
which is related to the series expansion near the leading edge in the favourable 
case. A step-by-step numerical method is used to extend the series solution to 
the point where the flow is shown to separate. The numerical procedure is the 
same as that used near the leading edge in the favourable case. The numerical 
integration in this case was carried out to an accuracy of five figures, and where 
the flow separates, it suggests that the skin friction and the heat transfer become 
singular. 

The methods given in this paper are general ones, but, for the sake of brevity, 
only the results for the case when the Prandtl number (r = 1 will be given. 

2. Equations of motion 
On the assumption that U2/a2 Q ATIT, < 1 

(where a is the velocity of sound in the fluid and AT = TI - To), we can neglect 
heating due to viscous dissipation and take the fluid as incompressible, so that 
changes in density are important only in producing buoyancy forces. The kine- 
matic viscosity v and the thermometric conductivity K can then be taken as 
constant (Whitham 1963, p. 127). The boundary-layer equations then become 

aulax + avlay = 0, 

u a q a x  + v a q a y  = K aZTlay2. 

(1) 

( 2 )  

(3) 

u aulax + v au/ay = gp(T - TJ + va2u/ay2, 

x is measured along the plate, x = 0 being the leading edge, and y is measured 
normally outwards. u and v are the velocities in the x and y directions respectively 
and T is the temperature of the fluid. In  ( 2 )  we take the + sign when the plate is 
vertically upwards (favourable case) and the - sign when the plate is vertically 
downwards (adverse case). The boundary conditions are 

u=v=O,  T = T ,  on y=O, 
u+U, T+T0 as y+co 

and u = U ,  T = T o  at x=U. 

3. Solution near the leading edge 
Near the leading edge the boundary layer is formed mainly by the retardation 

of the free-stream U by viscosity. The effect of the buoyancy forces increases as 
the boundary layer develops from the leading edge. This suggests the following 
transformation : II. = ( 2 V U X ) * f f ( f ; ? ? 1 ) ,  

T - To = AT@([, r ) ,  
where 1L- is the stream function and 
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and AT = TI - To. 

The boundary-layer equations (2) and (3) become 

with boundary conditions 

cr = V / K  is the Prandtl number. 
The method of solution of (4) and (5) is to expandf and 8 in series in 6 in the form 

On putting these expansions in (4) and (5) and equating powers of %, we get 
essentially the same set of equations given by Szewczyk (1964) (equations (7)-( 9) 
in his paper), except that the equation for f 2  (equation (9a) in his paper) should 
read 

This would account for the difference in Szewczyk's and the present solution for 
f2 and 8, (see table A which is obtainable from the editor). (The values off;, el, 
f k  and e2 for the case (T = 1 are given in table A.) 

The series expansions (6) and (7) enable us t o  calculate the values of various 
flow parameters near the leading edge. We obtain series for the skin friction 
coefficient 

the heat transfer coefficient 

f $  +fo fg  + 5f2fi  - 4fhfL + 3fi f - 2fi f 26, = 0. 

7w = (UgiAT)' ____ ( g ) V = O '  

the momentum thickness 

and the temperature thickness 

For the case (T = 1, we get 

7w = (2%)-*(0.4696+ 1.6216%- 1-2699(2? ...), 

Q = (2()-4(0.4696* 0-3834&-0-6544(2? ...), 

6, = (26)4(0*4696 + 0.2706% + 0.0632t2 i. . . .), 
6, = (2!#(0.4696+ 0*1278%-0*1309[2+ ...). 
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4. Asymptotic expansion (favourable case only) 

buoyancy forces. This suggests the following transformation, 
A long way from the leading edge, the boundary layer is formed mainly by the 

@ = ~ V C X % $ ( ~ ,  T j ) ,  T - To = ATB(5, q), 
where 

and 

- 
7 = CYl& 

C = (g/3AT/4v2)f. 

The boundary-layer equations (2) and (3) become 

The form of the outer boundary condition on $ suggests expansions of $ and 
8 in the form 
- 

9 = $,(r> + E - % l ( ~ )  + P l o g  5%A~j) + W ~ T )  + , . ., 
e = 8,(?) + 6-+B1(q) + C-llog [H,(V) + g-lBz(q) + . . . . 

(10) 

(11) 
- 

Terms of O(5-1 log () have to be included in the expansions (10) and (1 1) in order 
to be able to solve the equations for the terms of O(5-1). The necessity for including 
logarithmic terms in asymptotic expansions in boundary-layer theory is dis- 
cussed by Stewartson (1957, 1964). 

The equations for $o, go,  $1 and 8, are the same as those given by Szewczyk 
(equations (23) and (24) in his paper). The numerical solutions for $o and 8, are 
given by Ostrach (1953) and the values of $: and B1 for the case cr = 1 are given 
in table B which is available from the editor. 

The equations for the terms of O(6-l log g) are 

@;+H2+35750w;-$;;cD2 = 0, (12) 

(13) 
1 
- fl; + 3$,Hi - Q2B4 + 4$3, = 0, 

cD2(0) = cDi(0) = @h(Oo) = H2(0) = H,(m) = 0. 

= A(?$; - 3$()) = A@,, H2 = ATjj8A = AH,, 

0- 

with boundary conditions 

The solution of (12) and (13) which satisfies the required boundary conditions is 

where A is an, as yet, undetermined constant. 



444 J .  H .  Merkin 

The equations for the terms of O(5-l) then become 

fll f 8 2  -k 340 4: - 4: $2 = 4h( 3$0 $: - 2$L2) - $1 $;, 
1 -  -0;+3#,8;-$,iT;+4$;8, = -8;$,-2$;8,+ 12M;$", 

$2(0) = $;(o) = B2(0) = $;(a) = 8,(00) = 0. 

0- 

with boundary conditions 

Szewczyk omitted the terms of O((-llog() and his solution for the terms of 
O((-l) appears to be wrong. h has to be chosen so that we can obtain solutions for 
(14) and (15) which satisfy the required boundary conditions. The method of 
doing this is discussed in the appendix. We find that, for ff = 1, 

h = -0.015643, 

(The values of and H2 are given in table B.) We can still add arbitrary multiples 
pac and pH, to any solution of (14) and (15) and this will still satisfy the required 
boundary conditions. p will depend on some overall property of the boundary 
layer which we are unable to determine. If, however, we compare the velocity 
and temperature profiles obtained from the asymptotic series with those obtained 
from the step-by-step solution, a value of ,u = 0.03 i: 0.01 is suggested. 

From expansions (10) and (1 1) we can determine the asymptotic values of the 
flow parameters. We find, for ff = 1, 

T~ = 24(4(0*6422+ 0 ~ 0 8 3 0 ( ~ ~ + 0 ~ 0 1 0 5 ~ ~ 1 1 ~ g ( + ( 0 ~ 0 9 7 4 - 0 ~ 6 4 2 2 p ) ~ ~ 1 +  ...), 

(? = 2-4g-4(0*5671 + 0 ~ 0 7 1 2 ~ ~ - 0 ~ 0 0 8 9 & - 1 1 0 g ~ + 0 * 5 6 7 1 p ( ~ 1 +  ...): 

8, = 23@( - 0.1839 + 0.1 832c-4 - 0*0144(-1 log ( + . . . ), 
8, = 28(2(0.1890 + 0-07725-4 + 0*0089(-'log (+ . . .). 

5. Step-by-step solution 
The step-by-step solution is an accurate one, i.e. the full boundary-layer 

equations are solved and the accuracy is limited only by the time taken to per- 
form the calculations on the computer. We follow closely the method that Terrill 
(1960) used to describe the flow caused by a retarded main stream. The idea is that, 
knowing velocity and temperature profiles at  one station El, we can calculate 
them at another station t2, downstream of t1. As in Terrill's case we first apply a 
transformation to the boundary-layer equations ( l ) ,  (2) and (3). For starting 
the numerical solution, the transformed equations (4) and (5) are the appropriate 
ones to use. In  the favourable case this transformation is not appropriate far 
downstream, and we have to use the transformed equations (8) and (9); the 
change over from one set of equations to the other being done most conveniently 
a t  ( = 1. In this case we proceed with the integration in the (-direction until the 
numerical solution agrees with the asymptotic series solution to the required 
accuracy. In the adverse case the flow separates and so the numerical method 
cannot be used beyond this point. 
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We will give an outline of the method used to  solve (4) and (5). A similar method 
was used on (8) and (9); and a full description of the methods used will be given in 
my Ph.D. thesis (Manchester University). 

As in Terrill's case we work in terms of q = af/aq. The first approximation to be 
made is to replace derivatives in the [-direction by differences and all other 
quantities by averages. This leads to a fifth-order system of non-linear ordinary 
differential equations which we have to solve by iteration. The iterative pro- 
cedure used was as follows: if ql, 8, and q,, 8, are the values of velocity and 
temperature at 

v = q1+q2 and u = 81+82. 

Suppose dm) and u(m) are the mth iterative approximation then v(m+l) and u(m+l 
are given by the equations 

and [, respectively, then we define 

+ AV(@(U"2+" - 28 1 ) = 0, 

where dm) in (17) is the dm+l) calculated from (16), and 

This iteration process was found to converge easily. 

duces the problem to the solution of the two matrix equations of the form 
To solve (16) and (17), differences are introduced in the ?-direction. This re- 

(18) 

(19) B(mb(m+l) = d(m), 

where the elements of the column vectors c ( ~ )  and d(") are all known; A(m) is the 
same matrix as that given by Terrill, and B(") is a band matrix. The method of 
Choleski (Hartree 1958, pp. 180-4) is used to solve (18) and (19). Using this 
method and the special form of the matrices A(m) and B(") we can keep the storage 
space needed on the computer down to a minimum. 

The program was initially written to achieve an overall accuracy of 4 decimals 
in q and 8. The errors arising from using finite differences in the <-direction were 
kept small by covering the step from [, to 5, in first one, then two steps, and 
ensuring that the maximum modulus of the difference in the two solutions thus 
obtained was less than 5 x The values of q and 8 obtained from integrating 
a t  the half intervals were the ones printed out and also the ones used for the 
next step. The integrations in the 7-direction were carried out with 7 taking the 
values 

in the favourable case, and 

A!mwm+l) = c(m), 

7 = 0.05(0*05) 6.4 

7 = 0*05(0.05) 7.2 
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in the adverse case. For the solution of (8) and (9), 7j  took the values 

3 = 0.05(0.05) 10. 

It was found that the outer boundary conditions on q and 19 were satisfied to the 
required accuracy at  the points chosen. 

The size of the truncation errors in the 7-direction were checked using finite 
difference estimates for the errors, and these showed that the required accuracy 
had been reached. In  the favourable case the truncation errors were also checked 
by performing another integration with 7 taking the values 

7 = 0*025(0*025) 3.2. 

The outer boundary conditions on q and 0 were calculated from the solution 
with step length 0.05. This also confirmed that the required accuracy had been 
reached. 

The initial profiles were taken as fi(7) and &(q) from the series solution for 
small 5. The numerical solution could not start at  l j  = 0 because the iteration 
process did not converge there, but had to start from 5 = 5 x lo4, with an initial 
small step of 5 x lov6, so a procedure was introduced for doubling the step length 
when the maximum number of iterations needed in going from to l j2  was less 
than four. 

From the velocity and temperature profiles calculated at a particular stamtion 
we can include a procedure for calculating the flow parameters. S2 and S, are 
calculated using the Euler-Maclarin formula to calculate the integrals. From the 
boundary-layer equations, we know that, on 71 = 0, 

a2qla72 = T 26, a3q/a$ = i 2[aqa7, 

a 2 e / a r 2  = 0, a3e/a73 = 0. 

Putting these results in the Taylor series expansions for q and 8, for fixed 5, we 
get the formulae 

( 2 0 4  

ao 
16q1 - 12c$h2 g[h3 - 

14h "?I)'+ O(h4).  (21b) 

The results from using the formulae (20a) and (20b) and from (21 a )  and (21 b) 
were compared and a difference of a t  most 2 in the fifth decimal place resulted, 
except in the adverse case when the separation point was approached. In this 
case the difference was still small, being at most 3 in the fourth decimal place. 
Similar formulae were used in the calculation for 5 2 1 (favourable case). 
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6. Discussion of the results 
Tables 1 and 2 give the flow parameters at  various values of [for the favourable 

and adverse cases respectively. Tables of velocity and temperature profiles for 
both cases will be included in my Ph.D. thesis (Manchester University). 

The initial integration in the adverse case, working to an accuracy of 4 figures, 
showed that, at  separation, T~ and Q become singular. The integration in this 

0.12 t- 

E 
FIGURE 1. The behaviour of the skin friction r, and the heat transfer Q near separation. 

case was then performed again, working to an accuracy of 5 figures. Graphs of 
T~ and Q are given in figure 1. From them it appears that as [ + f;, (ts is the point 
where the flow separates) 

but drw/d[+- 00 and dQ/d[+ co, 
7,+0, Q+Qs,  

where gs = 0.192357 

and Q, = 0.428. 
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f ;  

0~00001 
0.00448 
0.04928 
0.10048 
0.20288 
0.30528 
0.46912 
0.55104 
0.67392 
0.79680 
0.87872 
1~00000 

1.2815 
1.5375 
2.1007 
2.5103 
4.0463 
5.2751 

10.190 
19.201 
29.032 
51.969 
78.184 

150.27 
242.02 
346.88 
504-17 
102.8 

series 1343'0) 

Q 
1.050 a 2  
4.978 UO 
1.552 UO 
1.122 a0 
8.135 U-1 
7.066 a-1 
6.011 U -  1 
5.672 U -  1 
5.284 a-1 
4.989 u - 1 
4.827 u - 1 
4.624 u - 1 

4.266 u - 1 
4.028 a-  1 
3-659 a-1 
3.468 u - 1 
3.018 a -  1 
2.799 a-1 
2.334 CC-1 
1.970 a-1 
1.767 U -  1 
1.512 U-1 
1-37 a-1 
1.157 a-1 
1.025 U- 1 
9.352 a - 2  
8.507 U-2 
7.107 a - 2  
6.645 a -2  
6.647 a - 2  

*Id 

1.050 a 2  
5-038 UO 
1-742 UO 
1.388 U O  
1.196 U O  
1.142 UO 
1.120 a0 
1.121 a0 
1.127 0.0 
1.137 U O  
1.145 UO 
1.157 UO 

1.186 UO 
1.213 a0 
1.268 UO 
1.304 a0 
1.419 UO 
1.494 a0 
1.714 010 
1.974 a0 
2.171 a0 
2-491 a0 
2-747 UO 
3.218 a0 
3-615 UO 
3.949 a0 
4.331 a 0  
5.615 a0 
5-519 a0 
5.518 a0 

3, 
2.100 a - 3  
4.433 u- 2 
1.433 a -  1 
1.985 a -  1 
2.655 a -  1 
3.059 u - 1 
3.412 U -  1 
3.498 u - 1 
3.543 a-  1 
3.506 u - 1 
3-443 a- 1 
3.301 a-1 

2.787 u - 1 
2.135 U -  1 
2.269 a - 2  

- 1,485 u - 1 
- 9.649 u - 1 
-1.765 UO 
-5.794 a0 
-1.529 a1 
-2.761 ~l 
-6.144 ~l 
-1.061 ~2 
-1.161 a 2  
-4.632 a 2  
-7.353 a 2  
-1.186 a 3  
-2.933 a3 
-4.111 a3 
-4.116 C C ~  

8, 
2.100 a - 3  
4.449 a - 2  
1.493 01- 1 
2.157 a-1 
3.131 U- 1 
3.912 a -  1 
4.974 a -  1 
5.452 a-  1 
6.124 U -  1 
6.754 a-1 
7.156 U -  1 
7.729 a-1 

8.977 u - 1 
1-004 UO 
1,220 a0 
1.365 UO 
1.860 010 
2.217 UO 
3-462 010 
5.380 010 
7.209 UO 
1.094 ~l 
1.471 a1 
1.471 a1 
3.365 a1 
4.390 ~l 
5.790 ct l  
9.830 ~l 
1.199 a1 
1.198 ~l 

TABLE 1. Flow parameters (favourable case)-given in floating point notation. 

5 
0.00249 
0.01265 
0.03174 
0.0 8 4 9 9 
0.11366 
0.14234 
0.16691 
0.17920 
0.18739 
0.19098 
0.1 9174 
0.19200 
0.19226 
0.192337 
0.192353 
0.1 92355 
0.192356 
0.192357 

Q 
7.324 
3.099 
1.813 
1.045 
0.8664 
0.7321 
0.6288 
0.5271 
0.5222 
0.4852 
0.4703 
0.4628 
0.4499 
0.4399 
0.4340 
0.4320 
0.4293 
0.4281 

7, 

7.284 
3.006 
1.654 
0.7764 
0.5492 
0.3676 
0.2224 
0.1433 
0.0782 
0.0366 
0.0289 
0.0168 
0.0081 
0.0032 
0.0012 
0.0008 
0.0002 
0~0000 

82 
0.0301 
0.0793 
0.1205 
0.2033 
0.2390 
0.2719 
0.2986 
0.3117 
0.3207 
0.3240 
0.3248 
0.3251 
0.3253 
0.3254 
0.3254 
0.3254 
0.3254 
0.3254 

8, 
0-0304 
0.0725 
0.1172 
0.1886 
0.2158 
0.2387 
0.2554 
0.2678 
0.2672 
0.2691 
0.2694 
0.2696 
0.2697 
0.2697 
0.2697 
0.2697 
0.2697 
0.2697 

TABLE 2. Flow parameters (adverse case). 
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The existence of this singularity conflicts with a result of Stewartson (1962), 
who gave an argument to show that the solution should be regular at  separation. 
Actually, Stewartson proved his result for a compressible boundary layer with 
heat transfer, but the same theory applies in this case. 

I would like to thank Mr E. J. Watson for his supervision during the prepara- 
tion of this paper. I would also like to thank the S.R.C. for the Research Student- 
ship which enabled me to undertake this research. 

Appendix. Determination of A 
The solutions d2 and 8, of (14) and (15) are of the form 

- 
$2 = $ 2 ~  + 4A$,, + p@,, 8, = 82a + 4h82b + pH,) 

where p is an undetermined constant, $2u and 82(c satisfy (14) and (15) with 
h = 0, and $2b and 82b satisfy 

&b f 82b + 390 $ i b  - $b $2b = 340 & - 2$;2) 
1 -  
- 6 b - k  3$08&-8;$2b+4$;82b = 3$,8;. 
0. 

We now construct solutions of the form 

$2a = X u  + ax, + p X 2 ,  82, = Wa + a x  + PW2, 
- 
- 

$2b = x b  + 7x1 + 6x2) 82, = @ + 7% + 6K, 
where ( X u ,  wa) and ( x b )  %) are particular integrals of the respective equations 
with x;(o) = 0, Xb(0)  = 0) 

UTi(0) = 0) WL(0) = 0, 
and ( X l ,  W,), ( X 2 ,  1%) are complementary functions with 

X';(O) = 1, Wi(0)  = 0, Xi(0) = 0) WL(0) = 1. 

W ,  -+ Qi) 

From the equations, we have, as T j  -+ 00, 

where i = a,  b, 1, 2 and Qi, P, are constants. Now OC and H, are complementary 
functions with 

so that QC = -$$(0)Xl+8;(O)X2, Hc = -$b(O)y+8;(0)W, 
and as @: and H, + 0 as 7j-t co, we get the relations 

@;(o) = - & ( O ) ,  HL(0) = e;(o)) 

- - 
&(O) Q 2  = #XO) Qi, e;(o) p2 = $b(O) pi. 

- 
We also have 82a(m) = Qa + 4 1  + PQ29 

$Lu(li) N Pa + aP1+ PP2 - ( 8 2 a ( ~ ) r / / 3 d ( ~ ) ) .  

29 Fluid Mech. 35 
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From this we can see why the term of O(6-l log 6 )  had to be included. Trying to 
make $Lu(co) and B2,(co) = 0 gives equations for a and p which become, on using 
( 2 2 ) y  a + ($;(o)/a;(o))p = - papl, a + (+;(o)/e;(o))p = - 
These are inconsistent, so we have to consider the forms ofB2 and & as ?-> co 

- 
6 2 ( ~ )  = Qa + 4hQb + (a  + 4hy) Qi + (P + 4h6) Q2)  

&(q) P,+4hPb+(a+4hy)Pl+(P+4h6)P2-(B2(co)r/3$o(co)). 

Putting B2(co) = $;(a) = 0 leads to the equations, using (22)) 

which are consistent provided 

A numerical integration of the equations shows that, for CT = 1, 

h = -0.015643. 
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